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Abstract

Protein engineering and characterisation of non-synonymous single nucleotide variants (SNVs) require ac-

curate prediction of protein stability changes (∆∆Gu) induced by single amino acid substitutions. Here,

we have developed a new prediction method called Evolutionary, Amino acid, and Structural Encod-

ings with Multiple Models (EASE-MM), which comprises five specialised support vector machine (SVM)

models and makes the final prediction from a consensus of two models selected based on the predicted

secondary structure and accessible surface area of the mutated residue. The new method is applicable to

single-domain monomeric proteins and can predict ∆∆Gu with a protein sequence and mutation as the

only inputs. EASE-MM yielded a Pearson correlation coefficient of 0.53-0.59 in 10-fold cross-validation

and independent testing and was able to outperform other sequence-based methods. When compared

to structure-based energy functions, EASE-MM achieved a comparable or better performance. The ap-

plication to a large dataset of human germline non-synonymous SNVs showed that the disease-causing

variants tend to be associated with larger magnitudes of ∆∆Gu predicted with EASE-MM. The EASE-

MM web-server is available at http://sparks-lab.org/server/ease.

Keywords: missense mutation, amino acid substitution, non-synonymous SNV, free energy change,

machine learning

1. Introduction

Accurate prediction of stability changes (∆∆Gu) induced by protein mutations is essential for suc-

cessful protein engineering and characterisation of non-synonymous single nucleotide variants (SNVs)
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[1]. The most reliable methods for estimating ∆∆Gu employ the three-dimensional structure of a target

protein and calculate the free energy difference before and after the mutation with an energy function5

[2, 3, 4, 5, 6, 7]. The main disadvantage of this approach is that it cannot be used when the three-

dimensional structure of the target protein is not available. Therefore, a number of machine learning

methods emerged that can predict stability changes knowing the protein sequence only [8, 9, 10, 11].

However, when independently evaluated, the performance of these methods is limited [12], especially for

mutations in previously unseen non-homologous proteins [13]. Moreover, the accuracy varies for different10

types of mutations depending on the secondary structure (SS) or accessible surface area (ASA) of the

mutation site [13].

Recently, we have reported that combining feature-based multiple models for the two-state classifica-

tion of stability changes as stabilising or destabilising improves prediction accuracy and achieves more

balanced results for different types of mutations [14]. In this work, we designed feature-based multiple15

models for the real-value prediction of ∆∆Gu and developed a publicly available web-server. Our method

is called Evolutionary, Amino acid, and Structural Encodings with Multiple Models (EASE-MM). We

compared the prediction performance of EASE-MM with related work in an extensive independent val-

idation, in which we employed only proteins with < 25% sequence identity to the dataset used for the

design and training of our method. EASE-MM yielded improvements in both cross-validation and in-20

dependent testing compared to other sequence-based methods. Moreover, EASE-MM, a sequence-based

method, achieved a performance comparable to or better than structure-based energy functions. We

applied our method to a large dataset of human germline non-synonymous SNVs and found that the

disease-causing SNVs tend to be associated with larger magnitudes of ∆∆Gu predicted with EASE-MM.

The significance of this finding is that EASE-MM, being a sequence-based method, can be applied to25

most single-domain monomeric proteins encoded in the human or other genomes.

2. Results

We have built EASE-MM, which comprises five specialised models to predict ∆∆Gu of mutations in

residues located in different SS elements (helix, sheet, or coil) and with different levels of ASA (exposed

or buried with a 25% threshold). The final prediction is the average of ∆∆Gu predicted with two models,30

one selected based on the predicted SS and the other based on the predicted ASA of the mutation site.

We used a dataset of 1676 mutations (S1676) to design our method and estimate its performance using

10-fold cross-validation. Next, we employed two independent datasets of 543 and 236 mutations (S543

and S236, respectively) to confirm the robust performance of our method. Both datasets had a sequence
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identity < 25% to the dataset used for the design and training of our method. Finally, we studied the35

relationship between disease-causing germline SNVs and ∆∆Gu predicted with EASE-MM.

2.1. Individual features

First, using the S1676 dataset, we examined the correlation between ∆∆Gu and each individual

feature from a diverse set of 19 features encoding evolutionary conservation, amino acid parameters, and

predicted structural properties of the mutation site (see Materials and Methods). The feature derived40

from the amino acid parameter bulkiness as the difference in the bulkiness of the mutant and wild-type

amino acids (∆ bulkiness) yielded the highest Pearson correlation coefficient (r) of 0.35. The best feature

derived from evolutionary conservation was the difference of the position-specific scoring matrix (PSSM)

probabilities of the mutant and wild-type amino acids (∆ PSSM) with an r of 0.27. The feature relative

ASA (rASA) of the mutation site had the strongest correlation (r of 0.27) from all predicted structural45

properties. Supplementary Table S1 lists all individual features and their correlation coefficients for the

S1676 dataset.

To illustrate the significance of combining features of different types, we evaluated every possible com-

bination of two features. We used the support vector machine (SVM) [15] algorithm with a linear kernel

function and 10-fold cross-validation to predict ∆∆Gu for the S1676 dataset. The top nine feature pairs50

were different amino acid parameters combined with either rASA or ∆ PSSM with an r in the range of

0.42–0.46. Namely, the best two combinations were ∆ bulkiness+rASA and ∆ hydrophobicity+∆ PSSM.

Supplementary Figure S1 shows ∆∆Gu as a function of ∆ bulkiness and rASA. The figure shows that the

introduction of bulkier (relative to wild-type) amino acids in the protein core (low rASA) has a tendency

to destabilise the protein structure.55

2.2. Feature-based multiple models

Each of the five models employed by EASE-MM is specialised for a different type of mutations.

To build these specialised models, we partitioned the training data (S1676) according to SS and ASA

predicted from the protein sequence with the SPIDER method [16]. Then, a greedy sequential forward

floating selection (SFFS) [17] algorithm was used to select the most relevant features for each data60

partition from the set of 19 features encoding evolutionary conservation, amino acid parameters, and

predicted structural properties (see Materials and Methods). Figure 1 depicts how EASE-MM predicts

∆∆Gu. First, SS and ASA of the mutation site are predicted from the protein sequence. Then, one

model is selected based on the predicted SS and one based on the predicted ASA of the mutation site.

The final prediction is calculated as the average of ∆∆Gu predicted with the two selected models.65
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Supplementary Table S2 lists the selected features for each EASE-MM model, ranked by their contri-

butions to the prediction performance. At least one of the two best performing amino acid parameters

(Supplementary Table S1), ∆ bulkiness and ∆ hydrophobicity, was represented in each of the five mod-

els. Every model contained at least one predicted structural feature, the best structural feature, rASA,

was included in all but one model. Also, at least one feature encoding evolutionary conservation was70

represented in all but one model. This highlights that combining features of different types is benefi-

cial for predicting ∆∆Gu. At the same time, each model comprised specific features not represented

in other models, supporting our hypothesis of building multiple specialised models for different types of

mutations. For instance, the amino acid attribute ∆ compressibility was selected for the helix and sheet

models but not for the coil model. Regarding the two ASA-based models, features ∆ isoelectric point75

and ∆ polarisability were selected for the buried but not for the exposed model. To demonstrate that

the five models of EASE-MM are indeed specialised, we permuted the labels of the five data partitions

and observed a statistically significant decrease in prediction performance of 11–43% (Williams’ test,

p < 0.01, Supplementary Table S3).

2.3. Cross-validation performance80

We conducted the first validation of our method using unseen-protein 10-fold cross-validation on the

S1676 dataset (1676 mutations in 70 proteins). The unseen-protein 10-fold cross-validation ensures that

any cluster of similar proteins is contained within a single cross-validation fold to prevent over-estimation

of the prediction results (see Materials and Methods). We replicated the cross-validation 100 times with

randomly re-generated folds and averaged the results. We compared the prediction performance of EASE-85

MM with our previous work, EASE-AA [13], which employs a single model trained using two evolutionary,

three predicted structural, and seven amino-acid-based features. In the 10-fold cross-validation, EASE-

MM yielded a Pearson correlation coefficient (r) of 0.56, which constitutes a relative improvement of

8% compared to EASE-AA with an r of 0.52 (Table 1). We performed Williams’ test for comparing

correlation coefficients [18] to confirm that the improvement was statistically significant with p � 0.01.90

Supplementary Figure S2 shows the experimentally measured ∆∆Gu as a function of ∆∆Gu predicted

with EASE-AA and EASE-MM for the S1676 dataset.

Using multiple models in this work was motivated by the fact that our previous work, EASE-AA,

yielded an unbalanced prediction performance for different types of mutations. Figure 2 shows the Pearson

correlation coefficient (r) for different types of mutations based on SS and ASA. In this analysis, SS and95

ASA were calculated using DSSP [19] from experimentally determined structures. Regarding different

SS types, EASE-MM was able to improve EASE-AA’s performance for mutations located in α-helices
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with a relative improvement of 12% from r of 0.51 to 0.57 (Williams’ test, p � 0.01). For β-sheets and

coils, the improvements were not significant (r of 0.56 and 0.59, p = 0.123; r of 0.40 and 0.43, p = 0.166,

respectively). Regarding buried (rASA≤ 25%) and exposed (rASA> 25%) mutation sites, both methods100

yielded a considerably lower correlation for the exposed residues. While EASE-AA yielded an r of only

0.31, EASE-MM achieved an r of 0.42, which represents a relative improvement of 35% (Williams’ test,

p� 0.01).

We also divided mutations based on the type of the wild-type and mutant amino acids (denoted as

‘wild-type→mutant’, Figure 2). We considered mutations to alanine and mutations to any other amino105

acid type, mutations from small to large amino acids and vice versa, mutations from hydrophobic to

hydrophilic amino acids and vice versa, and mutations from charged to polar amino acids and vice versa.

EASE-MM achieved a statistically significant improvement for mutations to amino acid types other than

alanine (Williams’ test, p� 0.01) with a relative r improvement of 10% (r of 0.54) compared to EASE-AA

(r of 0.49). This is interesting because many available datasets have a strong bias towards mutations to110

alanine. Particularly for S1676, 23% of mutations were ‘any→alanine’, whereas the second most common

mutation, ‘any→valine’, represented only 7%. This result shows that EASE-MM is not biased (in fact,

it has less bias relative to EASE-AA) towards ‘any→alanine’ mutations despite their abundance in the

training dataset. Regarding the other amino acid categories, EASE-MM achieved statistically significant

improvements for ‘large→small’ (Williams’ test, p� 0.01) and ‘charged→polar’ mutations (p = 0.003).115

2.4. Independent test performance

We employed two different independent test sets, which were not used in any way for neither feature

selection nor model optimisation, to verify if EASE-MM performs robustly. The S543 dataset comprised

543 mutations in 55 proteins with a sequence identity < 25% to the S1676 training set. The second

dataset (S236) contained 236 mutations in 23 proteins with a sequence identity < 25% to S1676. The120

two test sets were disjoint (sequence identity < 25%). We compared the performance of EASE-MM

with three sequence-based methods (I-Mutant2.0 [8], MUpro [9], and EASE-AA [13]), four structure-

based energy functions (Rosetta [5], FoldX [4], DFIRE [7], and PoPMuSiC [3]), and the structure-based

version of I-Mutant2.0 [8]. Table 1 summarises the results in terms of r and root mean square error

(RMSE). On the larger dataset (S543), EASE-MM yielded an r of 0.53 and was able to outperform all125

sequence-based as well as structure-based methods except for PoPMuSiC (Williams’ test, p < 0.01). The

relative improvements were of 66% (sequence-based I-Mutant2.0), 61% (MUpro), 47% (structure-based

I-Mutant2.0), 39% (Rosetta), 29% (FoldX), 18% (DFIRE), and 10% (EASE-AA). Figure 3 shows the

experimentally measured ∆∆Gu as a function of ∆∆Gu predicted with the nine compared methods for the
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S543 dataset. On the smaller dataset (S236), EASE-MM yielded an r of 0.59 and statistically significant130

improvements (p < 0.01) compared to sequence-based I-Mutant2.0 and MUpro as well as structure-based

Rosetta and FoldX. When compared to sequence-based EASE-AA (r of 0.53), the improvement was

not significant (p = 0.025). None of the nine compared methods was able to outperform EASE-MM.

Supplementary Figure S3 shows the experimentally measured ∆∆Gu as a function of predicted ∆∆Gu

for the S236 datasets.135

To see if the performance of the structure-based energy functions was affected by the quality of the

experimentally determined structures, we also evaluated the performance of all methods on subsets of

S543 and S236 comprising only mutations in proteins with high-resolution (≤ 3 Å) crystal structures. We

refer to these datasets as S405 with 405 mutations in 44 proteins and S157 with 157 mutations in 16

proteins. While the performance of all methods changed marginally, no method was able to outperform140

EASE-MM at significance level α = 0.01 (Table 1).

Figure 4 shows the prediction performance (r) of the three best-performing methods (EASE-AA,

PoPMuSiC, and EASE-MM) on the S543 dataset for different types of mutations based on the SS and

ASA of the mutation site and for different wild-type and mutant amino acid types. As it was expected,

the most challenging mutations were located in coils, mutations to other amino acids than alanine, and145

mutations introducing a larger amino acid. Supplementary Figure S4 depicts the same comparison for

all nine compared methods for both S543 and S236 datasets.

EASE-MM estimates the SS and ASA of the mutation site using SPIDER [16] from the protein

sequence. To see if EASE-MM could make better ∆∆Gu predictions using experimentally determined

structures, we substituted SPIDER predictions with the true SS and ASA assignments calculated with150

DSSP [19] from three-dimensional structures from the Protein Data Bank [20]. There was no statistical

difference in the prediction performance (r) of ∆∆Gu for the two methods (Supplementary Table S4,

Williams’ test, p = 0.973 and 0.446 for S543 and S236, respectively). As a control, we used randomly

generated SS and ASA assignments and observed a significant decrease in the prediction performance

from an r of 0.53 to 0.36 for S543 (p � 0.01) and from 0.59 to 0.31 for S236 (p = 0.002). These155

results demonstrate that SPIDER can reliably predict SS and ASA, and that their accurate prediction

is important for reliable prediction of ∆∆Gu by EASE-MM.

2.5. Stability changes of disease-causing mutations

Finally, we investigated if the predicted stability changes could be used as an indication of disease-

causing mutations. We compiled a dataset of 10,511 disease-causing non-synonymous SNVs in 2201160

proteins from ClinVar [21] and 278,760 putatively neutral non-synonymous SNVs in 20,096 proteins
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from the 1000 Genomes Project [22]. Figure 5 plots the distributions of the absolute value of ∆∆Gu

predicted with EASE-MM for the 10,511 disease-causing and 50,910 putatively neutral mutations with

allele frequency (AF) ≥ 1%. The two distributions were significantly different (Wilcoxon’s test, p �

0.01). As expected, the figure shows that while putatively neutral mutations are characterised by small165

magnitudes of ∆∆Gu, disease-causing mutations tend to have a larger absolute effect on the protein

stability according to EASE-MM predictions. We employed the absolute value of ∆∆Gu because it has

been shown that both protein destabilisation [1, 23] as well as stabilisation, via loss of flexibility [24, 25],

can lead to a loss of protein function. That is, it is the magnitude rather than the direction of ∆∆Gu that

might be indicative. The idea of using the absolute value of ∆∆Gu is further supported by a large-scale170

analysis of Casadio et al. [26]. There, the authors showed that the correlation of disease probability

with the absolute value of experimentally measured ∆∆Gu was stronger than with ∆∆Gu of only the

destabilising or stabilising mutations.

We also performed a binary classification of disease-causing and neutral SNVs using predicted ∆∆Gu.

Based on the receiver operating characteristic (ROC) curve analysis, EASE-MM yielded the area under175

the curve (AUC) of 0.69. We chose a prediction threshold of 0.8 kcal mol-1 based on the point where

the distributions of disease-causing and neutral SNVs intersect in Figure 5. This threshold resulted in

a Matthews correlation coefficient (MCC) of 0.25 with a sensitivity (correctly predicted disease-causing

SNVs) of 49% and specificity (correctly predicted neutral SNVs) of 80%, binary accuracy of 75%, precision

(positive predictive value) of 33%, and negative predictive value of 88%. Thus, the statistically different180

distributions of predicted ∆∆Gu can provide some discriminative power between disease-causing and

neutral SNVs. This means that ∆∆Gu predicted with EASE-MM can be useful in combination with

other predictive features for improving classification of disease-causing SNVs.

Next, we investigated the relationship between the AF and ∆∆Gu. The AF should generally reflect

the fitness of the allele with respect to its intended biological function [27]. Hence, we hypothesised that185

protein stability could be one of the factors affecting the AF. Figure 6 shows the absolute value of ∆∆Gu

predicted with EASE-MM as a function of binned log10 AF for 278,760 non-synonymous SNVs from the

1000 Genomes Project [22]. There, AFs were grouped into bins so that each bin contained at least 500

SNVs. However, some bins were larger due to many SNVs with the same AF value. As expected, there

was a strong negative correlation (r of −0.85) between the AF bins and the average of the absolute value190

of ∆∆Gu. That is, highly populated alleles tend to have smaller changes in the protein stability.
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3. Discussion

We have developed a machine learning method named EASE-MM, which can predict the change

in the protein stability upon a single amino acid substitution based on sequence information, without

the experimentally determined three-dimensional structure. EASE-MM employs multiple SVM models195

specifically designed for different types of mutations based on the SS and ASA of the mutation site.

Each SVM model combines a different set of features encoding evolutionary conservation, amino acid

parameters, and predicted structural properties. The new method yielded a robust performance with an

r of 0.56 in 10-fold cross-validation and 0.53–0.59 in independent testing. EASE-MM outperformed other

sequence-based methods and achieved a comparable or better performance than structure-based energy200

functions (Table 1).

To avoid over-training in a particular group of proteins, we coupled feature selection with the unseen-

protein cross-validation procedure, in which we ensured that no two folds shared sequences with a pairwise

identity ≥ 25%. A similar approach was used for our previous work [13, 14] as well as for the prediction

of disease-causing genetic variants [28, 29, 30]. Furthermore, we employed two different independent test205

sets to confirm that our method was not over-trained. These test sets had < 25% sequence identity to

our training data to prevent over-estimation of prediction results [31].

Our work reveals several predictive features that are important for protein stability. For instance,

sequence conservation is an expected feature because it has been long known to be a strong indicator of

functionally and structurally important residues. Indeed, we found a positive correlation between ∆∆Gu210

and ∆ PSSM of 0.27 (p� 0.01). Here, ∆ PSSM = PSSMmt −PSSMwt and thus, the positive correlation

means that an introduction of an uncommon amino acid type in a conserved position results in the

destabilisation of the protein. Different features, however, contribute differently to different models. As

shown in Supplementary Table S2, the most important features are rASA and changes in helix tendency

for the helix model, sequence conservation and changes in amino acid volume for the sheet model, changes215

in hydrophobicity and flexibility for the coil model, changes in isoelectric point and bulkiness for the buried

model, and changes in amino acid volume and predicted helix probability for the exposed model. These

features were selected automatically using a feature selection algorithm to maximise the performance on

the training dataset. Sometimes seemingly similar features were selected for distinct models. However,

their interpretation might vary. For instance, on the one hand, the feature changes in helix tendency220

(∆ helix tendency) in the helix model suggests whether the preference to form helix is different for the

mutant and wild-type amino acid types. On the other hand, the feature helix probability in the exposed

model expresses the likelihood of the mutation site adopting a helical structure in the wild-type protein.
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One disadvantage of using machine learning models is that the selected features are not always easy to

interpret. For example, also the sheet model contains the feature ∆ helix tendency but its contribution225

in this model is not very significant.

We found that the new method not only outperformed our previous work, EASE-AA [13], but yielded

a more balanced performance for different types of mutations based on the ASA of the mutation site

(Fig. 2). That is, EASE-MM yielded improvements in correlation with experimentally measured ∆∆Gu

for the exposed residues (rASA> 25%), which were more challenging to predict for both methods, while230

retaining the same performance as EASE-AA for the buried residues. Since EASE-AA uses a single

model trained with the same types of features as implemented in EASE-MM, it means that the improved

predictions can be mainly attributed to employing specialised models for different types of mutations.

While the new method can be applied universally to any amino acid sequence of a monomeric protein,

it was trained and tested only using structured, soluble proteins. In fact, this is a common limitation to235

most prediction methods being a direct consequence of the available experimental ∆∆Gu data lacking

membrane or intrinsically disordered proteins. Furthermore and particularly for EASE-MM, another

limitation is that structural properties (SS and ASA) can be reliably predicted only for single-domain

proteins. For the prediction of stability changes of protein-protein complexes, several structure-based

methods are available [4, 32].240

Finally, we applied EASE-MM to a large dataset of human disease-causing and putatively neutral

germline non-synonymous SNVs. We found that the distributions of predicted ∆∆Gu are significantly

different (Fig. 5). Moreover, there was a strong negative correlation between the binned AF and average

of the absolute value of predicted ∆∆Gu (Fig. 6). Our results show that highly populated alleles tend

to be associated with smaller changes in protein stability. As pointed out elsewhere [33, 34], the value of245

∆∆Gu alone is not sufficient to provide reliable classification of SNVs because protein stability is only one

of many disease-causing factors. Nevertheless, our results indicate that EASE-MM can be combined with

other predictive features for improved characterisation of disease-causing mutations. The significance of

this finding is that EASE-MM, being a sequence-based method, can be applied to most single-domain

monomeric proteins encoded in the human or other genomes.250

4. Materials and Methods

4.1. Datasets

We used several different datasets to design, validate, and independently test our method. Table 2

provides a summary of these datasets. We used the S1676 (1676 mutations in 70 proteins) and S236
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(236 mutations in 23 proteins) datasets compiled in Folkman et al. [14] from ProTherm [35] (version255

February 2013). ProTherm defines a stability change as the difference in the unfolding free energy:

∆∆Gu[kcal mol−1] = ∆Gu(mutant)−∆Gu(wild-type). Thus, destabilising mutations yield ∆∆Gu < 0.

We verified all records in ProTherm and corrected incorrect entries according to the original publications.

Next, we removed all duplicate entries of the same amino acid substitutions (e.g., different concentrations

of chemicals). If several measurements of the same mutation under the same experimental conditions were260

present, we averaged ∆∆Gu. If several measurements of the same mutation under different experimental

conditions were present, we kept only the measurement closest to the physiological pH 7. The S1676

dataset was used to design our method and optimise all parameters. S1676 and S236 are mutually

independent and do not share proteins with ≥ 25% sequence identity. Moreover, S236 is also independent

(< 25% sequence identity) to the two datasets which were used to build I-Mutant2.0 [8] and MUpro [9].265

Therefore, we used S236 for independent testing and comparison with related work. Another independent

test set, S543 (543 mutations in 55 proteins), was compiled as a subset of the 2648 mutations from Dehouck

et al. [3]. S543 has < 25% sequence identity to both S1676 and S236. Supplementary Figure S5 shows the

distributions of the experimentally measured ∆∆Gu for the three datasets. Supplementary Figures S6,

S7, and S8 show the frequencies and EASE-MM’s prediction errors of all wild-type and mutant amino270

acid types for S1676, S543, and S236, respectively.

To see if the comparison with structure-based energy functions (Rosetta [5], FoldX [4], DFIRE [7],

and PoPMuSiC [3]) was affected by structures determined with nuclear magnetic resonance (NMR), we

also compiled the S157 (a subset of S236 comprising 157 mutations in 16 proteins) and S405 (a subset

of S543 comprising 405 mutations in 44 proteins) datasets of high-resolution (≤ 3 Å) crystal structures275

from the Protein Data Bank [20].

Finally, to study the relationship between the predicted ∆∆Gu and human germline non-synonymous

SNVs, we compiled a dataset of 10,511 disease-causing (2201 proteins) and 278,760 putatively neutral

(20,096 proteins) SNVs from ClinVar [21] and 1000 Genomes Project [22], respectively. For the distri-

bution analysis, we considered the subset comprising 50,910 putatively neutral SNVs (14,113 proteins)280

with AF ≥ 1%.

4.2. Predictive features

We employed three types of predictive features in our method: evolutionary conservation, amino acid

parameters, and predicted structural properties. To estimate evolutionary conservation of the mutation

site, we used three iterations of PSI-BLAST [36] on the NCBI non-redundant database with an e-value

threshold of 10−3. From the PSSM generated with PSI-BLAST, we extracted the probability of the wild-
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type (PSSMwt) and mutant (PSSMmt) amino acids at the mutation site. We implemented two different

features, PSSMwt and ∆ PSSM = PSSMmt − PSSMwt. We also included a feature encoding the overall

conservation of the mutation site as property entropy (PE) with respect to six sets grouping amino acids

based on their chemical properties as aliphatic (A, V, L, I, M, C), aromatic (F, W, Y, H), polar (S, T, N,

Q), positive (K, R), negative (D, E), and special (G, P) [37]. The property entropy was calculated from

a multiple sequence alignment of the 30 most similar sequences from the NCBI non-redundant database

ranked by e-value with PSI-BLAST (using 100, 500, or all sequences resulted in a lower correlation with

∆∆Gu, S1676 dataset). We used the implementation from Capra and Singh [38] to calculate the property

entropy based on the following equation:

PE(msai) = 1−
(
−
∑

g∈G p(msai, g)× log p(msai, g)

log |msai|

)
,

p(msai, g) =
∑
aa∈g

p(msai, aa),

where msai is the i-th column of the multiple sequence alignment msa, G is the set of the defined property

groups, and p(msai, g) is the probability of the property group g at msai, which is equal to the sum of

probabilities of the amino acid types (aa) belonging to g.285

Different amino acid parameters have been used for the prediction of stability changes [39, 40, 41, 42].

We adopted a total of 11 amino acid parameters: hydrophobicity, volume, polarisability, isoelectric point,

helix tendency, sheet tendency, and a steric parameter (graph shape index) from Meiler et al. [43];

compressibility, bulkiness, and equilibrium constant with reference to the ionisation property of COOH

group from Gromiha et al. [44]; and flexibility from Vihinen et al. [45]. For each amino acid parameter290

(AAP), we calculated ∆ AAP = AAPmt − AAPwt, where AAPmt and AAPwt denote the value of the

given AAP for the mutant and wild-type amino acids, respectively. Supplementary Table S5 provides the

values of the 11 parameters for the 20 common amino acids.

Finally, we considered five structural features predicted from the protein sequence: rASA, helix, sheet,

coil, and disorder probabilities. The rASA and SS probabilities were predicted using SPIDER [16]. The295

disorder probability was calculated using SPINE-D [46].

4.3. Feature selection and multiple models

To build the five models employed by EASE-MM, we partitioned the S1676 training dataset according

to SS (helix, sheet, and coil) and ASA (buried or exposed with a 25% threshold). SS and ASA were

predicted from the protein sequence with SPIDER [16]. Supplementary Figure S5 shows the distributions300

of the experimentally measured ∆∆Gu for the different data partitions.
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A unique set of features was identified for each of the five SVM models using the SFFS algorithm

[17]. SFFS starts with an empty set of features S0 and iteratively searches for a better set of features

in two steps. First, the best feature f is selected as the one for which Si = Si−1 ∪ {f} yields the lowest

RMSE. Second, features f∗ for which Si − {f∗} yields a lower RMSE than Si−1 are iteratively removed.305

Thus, the number of features in S is not monotonously increasing because the search is ‘floating’ up and

down. Supplementary Table S2 lists the selected features for each EASE-MM model.

4.4. Training and evaluation

We employed the S1676 dataset to design our method, perform feature selection, and optimise all

parameters using the unseen-protein 10-fold cross-validation. The unseen-protein cross-validation is used310

to avoid over-fitting on specific proteins by splitting the dataset into cross-validation folds so that all

mutations of a cluster of similar proteins (≥ 25% sequence identity) are always contained within a single

fold. These clusters were identified with Blastclust [47]. To devise a robust estimate of the prediction

performance, we replicated the cross-validation procedure 100 times with randomly re-generated folds

and averaged the results.315

We implemented EASE-MM with ε-SVR (support vector regression) and radial basis function (RBF)

kernel using the LibSVM [48] library. For ε-SVR, we optimised three parameters (C, γ, and ε) using a

grid search in the range of C ∈ {2−1, 20, . . . , 26}, γ ∈ {2−8, 2−7, . . . , 20}, and ε ∈ {2−8, 2−7, . . . , 2−1}.

Then, each model was trained on S1676 and tested independently using S543 and S236 to confirm that

our approach did not result in over-fitting. Importantly, S543 and S236 did not share similar sequences

(≥ 25% sequence identity) with S1676 and were not used during the design, feature selection, or parameter

optimisation in any way. Furthermore, S543 and S236 were disjoint with < 25% sequence identity. The

performance of EASE-MM was assessed in terms of Pearson correlation coefficient (r) and root mean

square error (RMSE):

r = n
∑

xiyi−
∑

xi
∑

yi√
n
∑

x2
i−(

∑
xi)2
√

n
∑

y2
i−(

∑
yi)2

,

RMSE =
√

1
n

∑
(xi − yi)2.

Finally, we re-optimised the ε-SVR parameters and trained the final EASE-MM models, which are de-

ployed on our web-server, using a joint S1676+S236 dataset in order to maximise the size of the training

data.
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Abbreviations used:

1000G, 1000 Genomes Project; Å, Angstrom; AAP, amino acid parameter; AF, allele frequency;

ASA, accessible surface area; AUC, area under the curve; ∆∆Gu, stability change; MCC, Matthews

correlation coefficient; NMR, nuclear magnetic resonance; PSSM, position-specific scoring matrix; r,

Pearson correlation coefficient; rASA, relative accessible surface area; RBF, radial basis function; RMSE,335

root mean square error; ROC, receiver operating characteristic; seq, sequence-based; SFFS sequential

forward floating selection; SNV, single nucleotide variant; SS, secondary structure; SVM, support vector

machine; SVR, support vector regression; str, structure-based; ∆ X, a difference in the property X between

the mutant and wild-type amino acids.
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Table 1: Comparison of EASE-MM and related work in terms of correlation and error between the predicted and experi-

mentally measured stability changes (∆∆Gu)

All proteins High-resolution crystal (≤ 3 Å) structures

Method Dataset ra pa RMSEa Dataset ra pa RMSEa

EASE-AA
S1676b

0.52 4.2×10−5 1.56
—

— — —

EASE-MM 0.56 — 1.52 — — —

I-Mutant2.0 seqc

S543d

0.32 4.8×10−11 1.37

S405e

0.38 1.3×10−4 1.34

MUpro 1.1 0.33 6.9×10−8 1.32 0.37 4.6×10−4 1.30

I-Mutant2.0 strc 0.36 1.8×10−8 1.34 0.37 1.1×10−4 1.34

Rosetta 3.5 0.38h 3.8×10−5 3.58hj 0.35h 1.6×10−4 4.00hj

FoldX 3 0.41 1.1×10−3 1.87 0.42 0.027 1.92

DFIRE 0.45 8.4×10−4 1.44 0.46 0.048 1.49

EASE-AA 0.48 2.0×10−3 1.25 0.48 0.081 1.25

PoPMuSiC 2.1 0.53 0.909 1.21 0.49 0.404 1.27

EASE-MM 0.53 — 1.22 0.51 — 1.25

I-Mutant2.0 seqc

S236f

0.44 1.0×10−3 1.18

S157g

0.43 0.032 1.08

MUpro 1.1 0.36 2.7×10−5 1.20 0.29 3.9×10−4 1.14

I-Mutant2.0 strc 0.52 0.105 1.07 0.47 0.160 0.94

Rosetta 3.5 0.27i 1.2×10−7 1.88ij 0.34i 3.9×10−3 1.94ij

FoldX 3 0.28 3.3×10−6 1.70 0.34 9.6×10−3 1.80

DFIRE 0.54 0.162 1.18 0.52 0.563 1.03

EASE-AA 0.53 0.025 1.10 0.51 0.172 1.04

PoPMuSiC 2.1 0.57 0.630 1.05 0.58 0.640 0.98

EASE-MM 0.59 — 1.03 0.55 — 0.97

a r, Pearson correlation coefficient; p, probability that the correlation coefficients (r) of the given method and EASE-MM

are different due to random chance (Williams’ test for comparing correlation coefficients); RMSE, root mean square error

[kcal mol−1].

b S1676 was used for feature selection and 10-fold cross-validation; the sequence identity of any two proteins from two

different cross-validation folds was < 25%.

c seq, sequence-based; str, structure-based.

d S543 is an independent test set, not used for feature selection nor model optimisation, compiled from a subset of the

dataset from Dehouck et al. [3] with a sequence identity < 25% to S1676, S236, and S157.

e S405 is a subset of S543 containing only mutations in high-resolution (≤ 3 Å) crystal structures.

f S236 is an independent test set, not used for feature selection nor model optimisation, with a sequence identity < 25% to

S1676, S543, and S405.

g S157 is a subset of S236 containing only mutations in high-resolution (≤ 3 Å) crystal structures.

h Three mutations were removed due to atomic clashes (Erep > 7).

i Four mutations were removed due to atomic clashes (Erep > 7).

j ∆∆Gu predicted with Rosetta is in ‘Rosetta energy units’, no scaling was performed.
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Table 2: Datasets used to design, validate, and independently test EASE-MM

Mutation count Protein count

Dataset all Ha Sa Ca Ba Ea all Ha Sa Ca Ba Ea Source

S1676b 1676 615 438 623 744 932 70 51 41 56 54 59 Folkman et al. [14]

S543c 543 155 224 164 292 251 55 32 33 39 44 42 Dehouck et al. [3]

S405d 405 87 195 123 231 174 44 25 27 31 34 35 subset of S543

S236e 236 81 62 93 109 127 23 12 12 17 18 16 Folkman et al. [14]

S157f 157 33 58 66 61 96 16 7 8 12 12 11 subset of S236

human 10,511 (disease) + 278,760g (neutral) 2201 (disease) + 20,096g (neutral) ClinVar [21], 1000G [22]

a H, helix; S, sheet; C, coil; B, buried; E, exposed; the five SS and ASA partitions were predicted with SPIDER [16].

b training set and 10-fold cross-validation, the sequence identity of any two proteins from two different folds was < 25%.

c test set; S543 is independent to S1676, S236, and S157 with a sequence identity < 25%.

d test set; S405 is a subset of S543 containing only mutations in high-resolution (≤ 3 Å) crystal structures.

e test set; S236 is independent to S1676, S543, and S405 with a sequence identity < 25%.

f test set; S157 is a subset of S236 containing only mutations in high-resolution (≤ 3 Å) crystal structures.

g For the distribution analysis, a subset of 50,910 mutations (14,113 proteins) with allele frequency (AF) ≥ 1% was used.

∆∆Gu =
∆∆Gu

SS + ∆∆Gu
ASA

2

?

?

helix model
sheet model
coil model

exposed model
buried model

helix
model

buried
model

∆∆Gu
SS

∆∆Gu
ASA

Asp Lys ThrAlaPro Lys AlaValAsn

Tyr

… Ala …

Figure 1: EASE-MM calculates the stability change (∆∆Gu) as the average of ∆∆Gu predicted with two distinct models

chosen based on the predicted secondary structure and accessible surface area of the mutation site.
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Figure 2: Pearson correlation coefficient (r) as the performance of single-model EASE-AA [13] and multiple-models EASE-

MM for different types of mutations from the S1676 dataset. The striped bars show results which are statistically different

from EASE-MM (Williams’ test, p < 0.01). The secondary structure elements (helix, sheet, coil) and relative accessible

surface area (rASA) of the mutation site were calculated with DSSP [19]. We also divided mutations based on the type of

the wild-type and mutant amino acids (denoted as ‘wild-type→mutant’). Small and large amino acids were defined based

on the non-hydrogen atom counts. Amino acids were grouped based on their side-chains as hydrophobic (HPB): A, V, I,

L, M, F, Y, W; polar: S, T, N, Q; charged: D, E, K, R, H; and hydrophilic (HPL): polar + charged.
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Figure 3: Experimentally measured stability changes (∆∆Gu) from the S543 dataset as a function of ∆∆Gu predicted

with the five structure-based methods (A) and four sequence-based methods (B) including EASE-MM. Three predictions

which caused atomic clashes during structure optimisation with Rosetta (Erep > 7) were removed from the Rosetta plot.

For the structure-based methods (A), X-ray denotes predictions for proteins with high-resolution (≤ 3 Å) crystal structures

(405 mutations), and NMR denotes predictions for protein structures determined with nuclear magnetic resonance (138

mutations). The black lines are the linear regression fits.
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Figure 4: Pearson correlation coefficient (r) as the performance of EASE-AA, PoPMuSiC, and EASE-MM for different

types of mutations from the S543 dataset. The striped bars show results which are statistically different from EASE-MM

(Williams’ test, p < 0.01). Some methods yielded a negative correlation, which is shown here as a missing bar. The

secondary structure elements (helix, sheet, coil) and relative accessible surface area (rASA) of the mutation site were

calculated with DSSP [19]. We also divided mutations based on the type of the wild-type and mutant amino acids (denoted

as ‘wild-type→mutant’). Small and large amino acids were defined based on the non-hydrogen atom counts. Amino acids

were grouped based on their side-chains as hydrophobic (HPB): A, V, I, L, M, F, Y, W; polar: S, T, N, Q; charged: D, E,

K, R, H; and hydrophilic (HPL): polar + charged.
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Figure 5: Distributions of the absolute value of stability changes (∆∆Gu) predicted with EASE-MM for 10,511 disease-

causing non-synonymous single nucleotide variants (SNVs) from ClinVar [21] and 50,910 putatively neutral non-synonymous

SNVs from the 1000 Genomes Project (1000G) [22] with allele frequency (AF) ≥ 1%. The figure shows that neutral

mutations prevail for small stability changes, while disease-causing mutations are characterised by more significant changes

in the protein stability.
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the same AF value). The black line is the linear regression fit. The figure shows a strong negative correlation demonstrating

that highly populated alleles tend to have smaller changes in the protein stability.
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Figure S1: Experimentally measured stability changes (∆∆Gu) as a function of the amino acid parameter ∆ bulkiness
and predicted structural property relative accessible surface area (rASA) for the S1676 dataset. ∆ bulkiness denotes the
difference of the bulkiness of the mutant (bulkinessmt) and wild-type (bulkinesswt) amino acids. ∆∆Gu predicted based on
∆ bulkiness and rASA with a linear support vector machine (SVM) model yielded a Pearson correlation coefficient (r) of
0.46. The figure shows that the introduction of a bulkier (relative to wild-type) amino acid in the protein core (low rASA)
has a tendency to destabilise the protein structure.
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Figure S3: Experimentally measured stability changes (∆∆Gu) from the S236 dataset as a function of ∆∆Gu predicted
with the five structure-based methods (A) and four sequence-based methods (B) including EASE-MM. Four predictions
which caused atomic clashes during structure optimisation with Rosetta (Erep > 7) were removed from the Rosetta plot.
For the structure-based methods (A), X-ray denotes predictions for proteins with high-resolution (≤ 3 Å) crystal structures
(157 mutations), and NMR denotes predictions for protein structures determined with nuclear magnetic resonance (79
mutations). The black lines are the linear regression fits.
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Figure S4: Pearson correlation coefficient (r) as the performance of EASE-MM and the eight compared methods for
different types of mutations from the S543 (A) and S236 (B) datasets. The striped bars show results which are statistically
different from EASE-MM (Williams’ test, p < 0.01). Some methods yielded a negative correlation, which is shown here
as a missing bar. The secondary structure elements (helix, sheet, coil) and relative accessible surface area (rASA) of the
mutation site were calculated with DSSP [1]. We also divided mutations based on the type of the wild-type and mutant
amino acids (denoted as ‘wild-type→mutant’). Small and large amino acids were defined based on the non-hydrogen atom
counts. Amino acids were grouped based on their side-chains as hydrophobic (HPB): A, V, I, L, M, F, Y, W; polar: S, T,
N, Q; charged: D, E, K, R, H; and hydrophilic (HPL): polar + charged.
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S1676 dataset.
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Figure S7: Frequencies and EASE-MM’s prediction errors for different wild-type and mutant amino acid types from the
S543 dataset.
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Figure S8: Frequencies and EASE-MM’s prediction errors for different wild-type and mutant amino acid types from the
S236 dataset.
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Supplementary Tables

Table S1: Individual predictive features ranked by their correlation with experimentally measured stability changes
(∆∆Gu) on the S1676 dataset

Feature name ra pa Definitionb

∆ bulkiness 0.348 6.7×10−49 amino acid parameter, Gromiha et al. [3],
∆ bulkiness = bulkinessmt − bulkinesswt, Table S5

∆ hydrophobicity 0.339 3.1×10−46 amino acid parameter, Meiler et al. [4],
∆ hydrophobicity = hydrophobicitymt − hydrophobicitywt, Table S5

∆ steric parameter 0.328 1.9×10−43 amino acid parameter, Meiler et al. [4], ∆ steric parameter =
steric parametermt − steric parameterwt, Table S5

∆ sheet tendency 0.309 1.7×10−38 amino acid parameter, Meiler et al. [4],
∆ sheet tendency = sheet tendencymt − sheet tendencywt, Table S5

∆ polarisability 0.279 2.6×10−31 amino acid parameter, Meiler et al. [4],
∆ polarisability = polarisabilitymt − polarisabilitywt, Table S5

∆ PSSM 0.271 1.2×10−29 evolutionary feature, PSSM was generated with PSI-BLAST [5];
∆ PSSM = PSSMmt − PSSMwt, PSSMwt and PSSMmt are the prob-
abilities of the wild-type and mutant amino acids at the mutation site,
respectively

rASA 0.268 6.0×10−29 predicted structural property, relative accessible surface area of the mu-
tated residue was predicted with SPIDER [2]

∆ volume 0.265 2.0×10−28 amino acid parameter, Meiler et al. [4],
∆ volume = volumemt − volumewt, Table S5

∆ flexibility −0.202 6.5×10−17 amino acid parameter, Vihinen et al. [6],
∆ flexibility = flexibilitymt − flexibilitywt, Table S5

PSSMwt −0.179 1.8×10−13 evolutionary feature, PSSM was generated with PSI-BLAST [5]; PSSMwt

is the probability of the wild-type amino acid at the mutation site

sheet probability −0.132 5.3×10−8 predicted structural property, probability that the mutation site is located
in a sheet was predicted with SPIDER [2]

∆ ionisationc −0.131 6.7×10−8 amino acid parameter, Gromiha et al. [3],
∆ ionisation = ionisationmt − ionisationwt, Table S5

property entropy −0.122 4.9×10−7 evolutionary feature, overall conservation of the mutation site expressed
as property entropy with respect to six amino acid ‘property’ groups [7];
the property entropy was calculated from a multiple sequence alignment
of the 30 most similar sequences ranked by e-value with PSI-BLAST [5]
(see Materials and Methods)

∆ compressibility −0.091 1.8×10−4 amino acid parameter, Gromiha et al. [3],
∆ compressibility = compressibilitymt − compressibilitywt, Table S5

coil probability 0.084 5.9×10−4 predicted structural property, probability that the mutation site is located
in a coil was predicted with SPIDER [2]

∆ isoelectric point 0.067 6.0×10−3 amino acid parameter, Meiler et al. [4], ∆ isoelectric point =
isoelectric pointmt − isoelectric pointwt, Table S5

∆ helix tendency 0.054 0.026 amino acid parameter, Meiler et al. [4],
∆ helix tendency = helix tendencymt − helix tendencywt, Table S5

helix probability 0.040 0.100 predicted structural property, probability that the mutation site is located
in a helix was predicted with SPIDER [2]

disorder probability 0.022 0.361 predicted structural property, probability that the mutation site is in a
disordered region of the protein was predicted with SPINE-D [8]

a r, Pearson correlation coefficient; p, probability that r is different from 0 due to random chance.
b wt and mt refer to the wild-type and mutant amino acids, respectively.
c equilibrium constant with reference to the ionisation property of COOH group
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Table S2: Predictive features selected with the sequential forward floating selection algorithm for the five models of
EASE-MM, ranked by their contributions to the respective models

r decrease upon removingb

Model Featurea Relative Absolute r (single feature)c

helix

rASAd 23.7% 0.117 0.295
∆ helix tendency 9.2% 0.046 0.095
∆ volume 4.4% 0.022 0.278
∆ bulkiness 3.8% 0.019 0.321
∆ compressibility 3.4% 0.017 0.160
∆ isoelectric point 2.2% 0.011 0.193
helix probability 0.3% 0.002 0.186
coil probability 0.0% 0.000 0.182

features combined 0.495

sheet

∆ PSSMe 5.3% 0.033 0.314
∆ volume 4.7% 0.029 0.443
∆ hydrophobicity 4.6% 0.029 0.449
∆ compressibility 3.7% 0.023 0.109
∆ helix tendency 1.7% 0.011 0.075
sheet probability 0.9% 0.005 0.119
coil probability 0.5% 0.003 0.002
∆ steric parameter 0.2% 0.001 0.503
disorder probability 0.2% 0.001 0.091
∆ bulkiness 0.1% 0.000 0.533

features combined 0.618

coil

∆ hydrophobicity 19.5% 0.087 0.233
∆ flexibility 5.7% 0.026 0.227
rASAd 3.4% 0.015 0.212
∆ polarisability 2.2% 0.010 0.045
∆ PSSMe 1.5% 0.007 0.143
sheet probability 1.1% 0.005 0.129
PSSMwt

e 0.9% 0.004 0.063
coil probability 0.5% 0.002 0.219
∆ volume 0.3% 0.001 0.092

features combined 0.449

buried

∆ isoelectric point 6.0% 0.037 0.089
∆ bulkiness 5.6% 0.034 0.514
∆ PSSMe 4.4% 0.027 0.274
rASAd 2.7% 0.016 0.135
∆ polarisability 1.7% 0.010 0.434
∆ volume 1.5% 0.009 0.428
∆ flexibility 1.0% 0.006 0.262
∆ sheet tendency 0.8% 0.005 0.410

features combined 0.612

exposed

∆ volume 19.2% 0.071 0.076
helix probability 15.9% 0.059 0.008
rASAd 6.8% 0.025 0.107
∆ hydrophobicity 6.5% 0.024 0.141
sheet probability 6.3% 0.023 0.075
∆ helix tendency 4.4% 0.016 0.004
∆ flexibility 2.2% 0.008 0.015
PSSMwt

e 1.3% 0.005 0.097

features combined 0.370

a ∆, the change between the mutant and wild-type amino acids
b Decrease in Pearson correlation coefficient (r) for the given data partition (e.g., helix) upon removing the given feature
from the given model (e.g., helix)
c Pearson correlation coefficient (r) of a single feature for the given data partition (e.g., helix)
d rASA, relative accessible surface area
e ∆ PSSM = PSSMmt − PSSMwt; PSSMwt, PSSM probability of the wild-type amino acids; PSSMmt, PSSM probability
of the mutant amino acids; PSSM, position-specific scoring matrix
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Table S3: Comparison of the prediction performance when swapping the five different models of EASE-MM and their
corresponding data partitions on the S1676 dataset

S1676 data partition

helix sheet coil buried exposed

Model ra pb ra pb ra pb ra pb ra pb

helix 0.50 — 0.55 2.5×10−3 0.37 9.3×10−3 — — — —
sheet 0.38 1.0×10−4 0.62 — 0.38 7.7×10−3 — — — —
coil 0.40 4.2×10−4 0.53 1.8×10−4 0.45 — — — — —
buried — — — — — — 0.61 — 0.21 1.1×10−6

exposed — — — — — — 0.51 5.7×10−7 0.37

a r, Pearson correlation coefficient; correlation coefficients of the ‘matching’ models (i.e., the helix model for the
helix data partition) are highlighted in bold.
b p, probability that the correlation coefficients (r) of the given model and the ‘matching’ model (i.e., the helix model for
the helix data partition) are different due to random chance (Williams’ test for comparing correlation coefficients).

Table S4: Comparison of the prediction performance of EASE-MM when the structural properties are predicted from the
sequence with SPIDER, calculated from the structure with DSSP, or drawn randomly.

Method Dataset SSa and ASAa ra pa RMSEa

EASE-MM

S543
SPIDERb 0.53 — 1.22
DSSPc 0.53 0.973 1.24
randomd 0.36 1.1×10−7 1.36

S236
SPIDERb 0.59 — 1.03
DSSPc 0.57 0.446 1.06
randomd 0.31 2.2×10−3 1.27

a SS, secondary structure; ASA, accessible surface area; r, Pearson correlation coefficient; p, probability that the
correlation coefficients (r) of the given method and that of EASE-MM based on SPIDER are different due to random
chance (Williams’ test for comparing correlation coefficients); RMSE, root mean square error.
b SS and ASA were predicted from the protein sequence using SPIDER [2].
c SS and ASA were calculated from the protein structure using DSSP [1].
d The tests were repeated ten times, each time with randomly drawn SS and ASA; results were averaged.

Table S5: Scaled values of the 11 amino acid parameters which were implemented as candidate predictive features

AAa Hb Vb Pb IPb HTb STb GSIb F0
b F1

b F2
b Cb Bb ECb

Ala −0.171 −0.677 −0.680 −0.170 0.900 −0.476 −0.350 −0.044 −0.234 −0.269 0.587 −0.099 0.829
Asp −0.767 −0.281 −0.417 −0.900 −0.155 −0.635 −0.213 −0.103 0.900 0.014 −0.475 −0.082 0.247
Cys 0.508 −0.359 −0.329 −0.114 −0.652 0.476 −0.140 −0.642 −0.773 −0.035 −0.433 0.094 −0.388
Glu −0.696 −0.058 −0.241 −0.868 0.900 −0.582 −0.230 0.347 0.480 0.021 −0.900 0.105 0.565
Phe 0.646 0.412 0.373 −0.272 0.155 0.318 0.363 −0.863 −0.504 −0.113 −0.673 0.721 0.035
Gly −0.342 −0.900 −0.900 −0.179 −0.900 −0.900 −0.900 0.701 0.527 −0.050 0.378 −0.900 0.829
His −0.271 0.138 0.110 0.195 −0.031 −0.106 0.384 −0.480 −0.186 −0.255 −0.297 0.115 −0.088
Ile 0.652 −0.009 −0.066 −0.186 0.155 0.688 0.900 −0.332 −0.662 −0.411 −0.288 0.879 −0.900
Lys −0.889 0.163 0.066 0.727 0.279 −0.265 −0.088 0.339 0.844 0.900 −0.375 0.317 0.547
Leu 0.596 −0.009 −0.066 −0.186 0.714 −0.053 0.213 −0.590 −0.115 −0.064 −0.288 0.879 0.865
Met 0.337 0.087 0.066 −0.262 0.652 −0.001 0.110 −0.738 −0.900 −0.893 −0.205 0.370 0.724
Asn −0.674 −0.243 −0.329 −0.075 −0.403 −0.529 −0.213 0.516 0.242 0.000 −0.166 0.031 0.265
Pro 0.055 −0.294 −0.900 −0.010 −0.900 0.106 0.247 0.059 0.868 0.014 0.900 0.487 0.212
Gln −0.464 −0.020 −0.110 −0.276 0.528 −0.371 −0.230 0.870 0.416 −0.319 −0.403 0.192 0.529
Arg −0.900 0.466 0.373 0.900 0.528 −0.371 0.105 −0.066 0.416 −0.206 0.430 0.175 −0.106
Ser −0.364 −0.544 −0.637 −0.265 −0.466 −0.212 −0.337 0.900 0.575 −0.050 −0.024 −0.300 0.600
Thr −0.199 −0.321 −0.417 −0.288 −0.403 0.212 0.402 0.192 0.599 0.028 −0.212 0.323 0.406
Val 0.331 −0.232 −0.285 −0.191 −0.031 0.900 0.677 −0.480 −0.385 −0.120 −0.127 0.896 0.794
Trp 0.900 0.900 0.900 −0.209 0.279 0.529 0.479 −0.900 −0.464 −0.900 −0.074 0.900 0.900
Tyr 0.188 0.541 0.417 −0.274 −0.155 0.476 0.363 −0.634 −0.361 −0.659 −0.738 0.546 0.582

a AA denotes an amino acid in the standard three-letter code.
b H, hydrophobicity; V, volume; P, polarisability; IP, isoelectric point; HT, helix tendency; ST, sheet tendency; GSI, graph shape index (steric parameter);
F0, flexibility with no rigid neighbours; F1, flexibility with one rigid neighbour; F2, flexibility with two rigid neighbours; C, compressibility; B, bulkiness;
and EC, equilibrium constant with reference to the ionisation property of COOH group.

10



Folkman et al. Supplementary Data

References

[1] W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-
bonded and geometrical features, Biopolymers 22 (12) (1983) 2577–2637.

[2] R. Heffernan, K. Paliwal, J. Lyons, A. Dehzangi, A. Sharma, J. Wang, A. Sattar, Y. Yang, Y. Zhou,
Improving prediction of secondary structure, local backbone angles, and solvent accessible surface
area of proteins by iterative deep learning, Scientific Reports 5 (2015) 11476.

[3] M. M. Gromiha, M. Oobatake, H. Kono, H. Uedaira, A. Sarai, Relationship between amino acid
properties and protein stability: buried mutations, Journal of Protein Chemistry 18 (5) (1999) 565–
578.

[4] J. Meiler, M. Muller, A. Zeidler, F. Schmaschke, Generation and evaluation of dimension-reduced
amino acid parameter representations by artificial neural networks, Molecular modeling annual 7 (9)
(2001) 360–369.

[5] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. Lipman, Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Research 25 (17)
(1997) 3389.

[6] M. Vihinen, E. Torkkila, P. Riikonen, Accuracy of protein flexibility predictions, Proteins: Structure,
Function, and Bioinformatics 19 (2) (1994) 141–149.

[7] L. A. Mirny, E. I. Shakhnovich, Universally conserved positions in protein folds: reading evolutionary
signals about stability, folding kinetics and function, Journal of Molecular Biology 291 (1) (1999)
177–196.

[8] T. Zhang, E. Faraggi, B. Xue, A. K. Dunker, V. N. Uversky, Y. Zhou, SPINE-D: Accurate prediction
of short and long disordered regions by a single neural-network based method, Journal of Biomolecular
Structure and Dynamics 29 (4) (2012) 799–813.

11


	Introduction
	Results
	Individual features
	Feature-based multiple models
	Cross-validation performance
	Independent test performance
	Stability changes of disease-causing mutations

	Discussion
	Materials and Methods
	Datasets
	Predictive features
	Feature selection and multiple models
	Training and evaluation


